Abstract

The propagation of shock waves in He and Ar containing 0.01% of molybdenum hexacarbonyl Mo(CO)6 as a heavy component of the mixture has been investigated with the use of the method of multichannel emission spectroscopy and an electrostatic probe with a spatial resolution of 0.2 mm placed in the core of a flow. The measurements have been carried out in incident shock waves with a high-vacuum shock tube in a Mach number range of 2.5–3.4. The equilibrium parameters behind the shock front are P2 = 0.109–1.124 atm and T2 = 853–1280 K, the concentration of Mo(CO)6 is specially controlled, and high-purity He and Ar are used. The experiments are carried out under conditions when collisions between heavy molecules can be disregarded. It has been found that a narrow conduction band with a carrier density of more than 105 cm−3 appears in the shock front. The carrier density and its time characteristics have been measured. A correlation has been found between the conduction band and peaks of the nonequilibrium radiation in the visible and ultraviolet spectral ranges. This radiation disappears when the equilibrium parameters are reached behind the shock wave. The arrival of the conduction band and radiation band in the shock front at the measurement section advances the arrival of the density gradient of the shock front in most regimes. It has been found that the maximum conduction increases as the square of the Mo(CO)6 concentration and decreases with increasing pressure. The effective threshold of the appearance of charges in the shock front has been determined as 1.35 ± 0.15 eV. A qualitative mechanism of the effect has been proposed with allowance for possible separation of charges in the shock front and with the inclusion of the “hot” wing of the energy distribution function of pair collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.