Abstract

A simple, highly sensitive and environment-friendly method, combined with flame atomic absorption spectroscopy (FAAS) is developed to preconcentrate and determine trace amounts of thallium in aqueous solutions. In the preconcentration step, the thallium (I) from 30 mL of an aqueous solution was extracted into 350 µL of ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6], containing dicyclohexyl-18-crown-6 (DCH-18-crown-6) as complexing agent. Subsequently, the DCH-18-crown-6 complex was back-extracted into 300 µL of nitric acid (2 mol L−1) solution, and analyzed by FAAS. Several parameters influencing the extraction and determination of thallium, such as pH, concentration of DCH-18-crown-6, sonication and centrifugation times, sample volume, ionic liquid amounts, ionic strength, and concentration of stripping acid solution, were optimized. Under optimum conditions, the calibration graph was linear in the range of 5 to 400 ng mL−1, the detection limit was 0.64 ng mL−1 (3Sb/m, n = 7), the enhancement factor was 98.2 and the relative standard deviation was ±1.43%. The results for preconcentration and determination of trace amount of thallium in waste water, well water, tap water, sea water, human hair and nail demonstrated the accuracy, recovery and applicability of the presented method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.