Abstract

The development of the new electrolytes is essential to increase the energy density of the Li-ion batteries (LIBs)1. Solid electrolytes have attracted the interest of researchers as a next-generation electrolyte for LIBs due to their superior physical and chemical stability, large working potential windows, high transference number, and intrinsic safety2 3.In this study, we have designed and synthesized novel organic electrolytes for LIBs with a naphthalene mesogenic moiety bearing a lithium sulfonate group connected to two flexible long-alkyl chains. Starting from the lithium 4-aminonaphthalene-1-sulphonate building block, alkyl-tails were successfully doubly grafted on the amine function with N, N-di-isopropylethylamine in N, N-di-methylformamide. Once the reaction was completed, a washing, purification and neutralization step was carried out to obtain the desired product. Those electrolytes have been synthesized with 95 % purity as suggested from the NMR and mass spectrum. The chains length were differ by the number of alkyl groups in the chains from 8, 12, and 16, namely lithium 4 - (dioctylamino) naphthalene – 1 – sulfonate (BS-Li-8), lithium 4 - (didodecylamino) naphthalene – 1 - sulfonate (BS-Li-12), and lithium 4 - (dihexadecylamino) naphthalene – 1 – sulfonate (BS-Li-16). We have employed molecular dynamics simulations and various experimental techniques for a comprehensive understanding of the bulk structure and transport mechanism of those electrolytes. Simulated static structural factor, radial distribution functions, and experimental small angle x-ray scattering spectrum suggest that degree of aggregation, ionic correlations, and structural properties of materials at the nanoscale of the electrolyte molecules varies with the length of the alkyl chains. The Li+ ion mobility calculated from experimental Electrochemical Impedance Spectra, using a symmetrical cell with blocking electrodes and molecular dynamics simulations reveal that BS-Li-12 is the most conductive (approximately 10-3 S / cm at 1400 C) owing to the weaker cation-anion correlation than others. It was observed that the conductivity of the Li+ ions is directly related to the coordination number between Li+ and anionic centers, since, in BS-Li-12, Li+ coordinates with two anionic centers while for others, it is three. During the conduction, Li+ move from one anionic site to another by changing their coordination number with anion.We successfully synthesized next-generation organic electrolytes with well-organized Li+ conduction channels. The comprehensive study of the influence of the nonpolar alkyl chain on the bulk structural arrangement and conductivity of such electrolytes will contribute significantly to the development of future LIBs electrolytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.