Abstract

Ionic liquid 2′,3′-epoxypropyl-N-methyl-2-oxopyrrolidinium salicylate ([EPMpyr][SAL]) IL, bonded iron oxide magnetic nanoparticles (MNP) with zeolite modified nanocomposite (IL/MNP/Zeo) was synthesized. This nanocomposite was characterized by micro and macroscopic techniques, namely, Fourier transform infrared spectroscopy (FTIR), x-ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive x-ray spectrometry (EDX), transmission electron microscopy (TEM), thermogravimetry and differential scanning calorimetry (TGA&DSC). These techniques have been used to reveal the overall physical properties including functional groups which are present, crystalline nature, morphology, elemental identifications and thermal stability of the nanocomposite respectively. In this case, ionic liquid (IL) and iron oxide magnetic nanoparticles (MNP) were synthesized and characterized. Both IL and MNPs contributed to enhancing the binding property and thermal stability of the nanocomposite. This novel nanocomposite acts as an excellent catalyst for the reduction of several nitroanilines, namely, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, Nitrophenyl diamine and dyes (Methylene blue and Allura red). In this investigation, time-dependent UV–vis spectroscopy was used to monitor the reduction reactions. Furthermore, the catalyst was removed after completion of the reaction, using an external magnet; then purified and recycled for further reactions with negligible loss of activity. In addition, these reduction reactions are obtained in an aqueous medium which makes them more economical, eco-friendly and easy to handle. This type of research is very helpful in environmental protection; especially the pollution of natural water resources from industrial wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.