Abstract

This work explores the fabrication and characterization of an ionic liquid channel field effect transistor (FET) incorporated within the trench structure on SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> . The trench structure allows any liquid to be accommodated, thereby eliminating the mold creation on the device or the requirement for an intricate architecture to store liquid. For the fabrication of the trench, we followed a standard photolithography process with the help of selective etching of aluminum and SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> . The fabricated trench surface is characterized using atomic force microscopy (AFM) and contact angle analysis. The electrical characterization of the proposed FET structure is also performed with 0.01-mM potassium chloride (KCl) solution as an ionic channel. We tested both the n-FET and p-FET type characteristics which can be controlled by the back gate biasing condition. The dc characterization shows a high I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ON</sub> /I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OFF</sub> ratio of 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sup> for both the n-FET and p-FET. The device further shows an improvement in K <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> mobility and Cl <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-</sup> mobility of 2.24 ×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /Vs and 4.96 ×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /Vs, respectively. We also carried out the FET structure modeling to estimate the effective C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ox</sub> for the trench SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> structure. It is observed that the total capacitance after the inclusion of Debye length is 1.29 ×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> F/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . Furthermore, the number of ions is also calculated from the electrical characteristics, and it is almost comparable with the number of ions in the molar solution. Overall, the proposed fabricated structure, although simple, enables to accommodate any liquid as a channel and provides an easy way to develop electrolyte-based sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.