Abstract

The tuning of the carrier density is pivotal for uncovering the underlying superconducting mechanisms and constructing quantum devices because the carrier density is a major parameter that influences superconductivity. However, the carrier density is frequently entangled with other physical degrees of freedom. Tuning the carriers via chemical doping will perturb the pristine crystal lattice, thereby making independent control of carrier density difficult to realize. In the recent development on ionic gating, the advantages of traditional chemical doping and field-effect tuning have been combined, i.e., in situ and reversible tuning of the carriers in a large amount is achieved. In the recent rapid advances of ionic gating, two complementary schemes, i.e., electrostatic field-effect tuning and electrochemical doping, have been coherently developed. This review summarizes the application of ionic gating in inducing novel superconductivity and tuning the properties of high-temperature superconductors. Electrostatic field-effect tuning using ionic liquids can induce superconductivity in insulating/semiconducting systems with excellent efficiency, whereas electrochemical doping plays an essential role in tuning metallic samples with intrinsically high carrier densities. Thus, because of the unparalleled tuning capability and the ease of incorporation of ionic gating with other characterization techniques, it is expected to become an indispensable technique for investigating superconductivity, based on which unexplored phase diagrams with high precision can be obtained, and contribute to the comprehension of novel superconducting states such as the high-temperature superconductivity.

Highlights

  • 摘要 载流子在超导材料中扮演关键角色, 其浓度调控对研究超导特性及相关量子器件至关重要. 然而载流子浓 度通常与其他自由度相互耦合, 难以做到单一物理量变化, 例如, 化学掺杂同时会导致晶格等发生变化. 最近迅速 发展的离子液体调控技术, 兼具了传统的化学掺杂和场效应晶体管优点——大范围、原位、可逆地调节载流子 浓度. 随着这项技术的发展, 逐渐演变出两类调控思路: 静电场效应和电化学调控. 本文从这两个方面, 回顾了离 子液体调控在诱导新奇超导态和调控高温超导薄膜物性上的应用: 静电场效应对绝缘或半导体体系十分有效, 而 对于本身载流子浓度较高的材料(如高温超导体等), 电化学调控则发挥了重要作用. 离子液体因其强大的原位调 控能力和易于与其他手段结合的特点, 正逐渐成为超导研究中不可或缺的手段, 在构建精确相图、突破高温超导 机理等方面发挥不可替代的作用

  • 引用格式: 曲壮壮, 江星宇, 路建明, 等. 离子液体调控超导研究. 中国科学: 物理学 力学 天文学, 2021, 51: 047410 Qu Z Z, Jiang X Y, Lu J M, et al Ionic gating in the study of superconductivity

  • Shiogai等人[98,100]正是利用了这种腐蚀效应, 将~10 nm厚的FeSe薄膜(不超导)减薄到单层(~0.6 nm), 图 10 (网络版彩图) Pr2CuO4±δ薄膜分别在正偏压(a)和负偏压(b)调控下温度依赖的电阻行为的演化

Read more

Summary

Introduction

摘要 载流子在超导材料中扮演关键角色, 其浓度调控对研究超导特性及相关量子器件至关重要. 然而载流子浓 度通常与其他自由度相互耦合, 难以做到单一物理量变化, 例如, 化学掺杂同时会导致晶格等发生变化. 最近迅速 发展的离子液体调控技术, 兼具了传统的化学掺杂和场效应晶体管优点——大范围、原位、可逆地调节载流子 浓度. 随着这项技术的发展, 逐渐演变出两类调控思路: 静电场效应和电化学调控. 本文从这两个方面, 回顾了离 子液体调控在诱导新奇超导态和调控高温超导薄膜物性上的应用: 静电场效应对绝缘或半导体体系十分有效, 而 对于本身载流子浓度较高的材料(如高温超导体等), 电化学调控则发挥了重要作用. 离子液体因其强大的原位调 控能力和易于与其他手段结合的特点, 正逐渐成为超导研究中不可或缺的手段, 在构建精确相图、突破高温超导 机理等方面发挥不可替代的作用. 中国科学: 物理学 力学 天文学, 2021, 51: 047410 Qu Z Z, Jiang X Y, Lu J M, et al Ionic gating in the study of superconductivity (in Chinese). 中国科学: 物理学 力学 天文学 2021 年 第 51 卷 第 4 期 离子调控主要涉及两类离子媒介: 一种是靠无机 盐电离形成的小型离子, 如溶于有机凝胶PEO的碱金 属盐LiClO4电离后的金属离子Li+, 或者电解质中H2O 被电离后的H+和O2−; 另一种是电解质仅由可移动的 阴阳有机离子构成, 称为离子液体(Ionic Liquid), 比如, 在N,N-二乙基-N-甲基-N-(2-甲氧乙基)铵基双(三氟甲 基磺酰)酰亚胺(DEME-TFSI)中, 阳离子是DEME+, 阴 离子是TFSI−. 认识这个区分经过了一定的 研究积累和发展, 比如, 在2013年, Jeong等人[14]通过离 子液体调控抑制了VO2薄膜的金属-绝缘转变, 发现其 原理并不是之前认为的静电场效应导致载流子浓度改 变[7], 而是电化学反应导致的氧迁移[14]. 利用上述 方法成功的案例包括: Parendo等人[18]利用SrTiO3较高 的介电常数在1 nm的Bi膜中调控出超导态(超导转变 温度Tc~0.15 K); Ahn等人[19]采用铁电材料PZT将 20 nm的GdBa2Cu3O7薄膜从绝缘体转变为超导体 (Tc ~7 K). 本征绝缘的SrTiO3经过还原反应产生氧空位缺陷或Nb 掺杂后能够产生载流子, 当浓度达到1019–1020 cm−3时 产生超导态[21](绿色空心圆).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.