Abstract
We examine how the mean-field ionic screening excess associated with a charged macromolecule depends upon the macromolecule's geometric conformation and net charge. Our approach involves expanding about Debye–Huckel theory, which allows us to derive a series of general results that establish explicit connections between the ionic excess, non-linear screening mechanisms, and the mobile ion entropy. We conclude with an analysis of the ionic screening entropy in familiar models for polyelectrolyte force-extension behavior, and we find the changes in this entropy are often quite substantial relative to the total free energy differences characterizing a polyelectrolyte's extended and compact states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.