Abstract

The role of cyclophosphazenes with oxyethylene chains (N3P3(OCH2CH2)nOCH3, (n = 3, 3, n = 7.2, 4) and N4P4[OC6H4O(CH2CH2O)7.2CH3]8 (8) for the synthesis and ionic conductivity in polymethacrylate networks was studied. Reflecting the structural features of cyclophosphazenes, the 7Li NMR spectra of the mixture of 3 and LiN(SO2CF3)2 showed that more than 40% of the Li+ salt could exist as a free ion at room temperature. Similar values were obtained for 4 and 8. Cross-linked methacrylate polymers (12–14, and 16–18) were prepared from the reaction of poly(ethylene glycol) methyl ether methacrylate and poly(ethylene glycol) dimethacrylate both in the presence of these cyclophosphazenes which act as molecular imprinting molecules (method II, M-II) and without the cyclophosphazene (method I) DSC studies of the imprinted polymer, 12(20)/3/Li+ system after removal of the cyclophosphazene showed that the glass transition temperature range (ΔTg) becomes significantly narrower compared to that of the unimprinted 11(20)/3/Li+ system, where cross-linked polymer 11(20) was prepared in the absence of the cyclophosphazenes (method I, M-I). The ionic conductivity of the Li+/cross-linked polymer system was improved by the subsequent readdition of the cyclophosphazenes. The 12(20)/3/Li+ complex showed a conductivity of 1.1 × 10−3 S/cm at 90 °C, which was two times higher than that of the 11(20)/3/Li+ complex. The effectiveness of the small molecule imprinting technique for the preparation of cross-linked polyelectrolytes with high conductivity and mechanical stability is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.