Abstract

Lithium metal batteries bring greater promise for energy density, often relying on solid‐state electrolytes to meet critical benchmarks. However, Li dendrite formation is a prevailing problem that limits the cycle life and Coulombic efficiency of solid‐state Li metal batteries. For the first time, a thin (<100 nm) layer of electronically insulating, ionically conducting lithium phosphorus oxynitride (LiPON) is applied using atomic layer deposition between a Li anode and garnet Li7La3Zr2O12 (LLZO). The performance of a conformal LiPON layer as an electron barrier in symmetric Li‐LLZO cells is observed through potential step chronoamperometry, galvanostatic cycling, electron microscopy, and various spectroscopic techniques. The LiPON‐coated LLZO achieves 100 times lower electronic conductance than LLZO alone. Cycling carried out at 0.1 mA cm−2 for 100 cycles demonstrates that suppression of electron pathways into the bulk solid electrolyte improves the cycle life of a lithium metal cell. These findings suggest an electronic conductivity effect in solid‐state electrolytes. A strategy is demonstrated to design thin‐film (LiPON)‐modulated bulk solid‐state electrolytes (LLZO) capable of maintaining high ionic conductivity and electrochemical stability while reducing the effective electronic conductivity, which results in significantly decreased dendrite formation, improved cycle life, and greater interfacial integrity between the electrolyte and a Li anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.