Abstract

Alveolar type II cells were isolated from late-term fetal sheep to investigate ion transport across fetal distal lung epithelium. In Ussing chambers, basal transepithelial potential difference (PD; reference apical side), equivalent short-circuit current (Ieq), and resistance were -0.10 +/- 0.05 mV, 0.10 +/- 0.08 microA/cm2, and 821.5 +/- 38.8 omega .cm2, respectively. Epinephrine (100 nM) increased PD from -0.13 +/- 0.19 to -1.37 +/- 0.20 mV and Ieq from 0.18 +/- 0.26 to 1.47 +/- 0.28 microA/cm2. Propranolol (100 nM) inhibited responses to epinephrine. Forskolin (10 microM) increased PD to -0.81 +/- 0.08 mV and Ieq to 1.02 +/- 0.12 microA/cm2. Mucosal amiloride (200 microM) and serosal bumetanide (10 microM) decreased the forskolin-stimulated PD by 23.42 +/- 4.73 and 25.57 +/- 3.9%, respectively. We conclude that in fetal sheep distal lung epithelium amiloride-inhibitable sodium absorption and bumetanide-sensitive chloride secretion are stimulated by forskolin and that epinephrine effects on ion transport are mediated by beta-adrenergic receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.