Abstract

In the bulk, condensed-phase HCl exists as a dissociated Cl- ion and a proton that is delocalized over solvating water molecules. However, in the gas phase, HCl is covalent, and even on the introduction of hydrating water molecules, the HCl covalent state dominates small clusters and is relevant at larger clusters including 21 water molecules. Electronic structure calculations (at the MP2 level) and ab initio metadynamics simulations (at the DFT level) have been carried out on HCl-(H2O)n clusters with n = 2-22 to investigate distinct solvation environments in clusters from covalent HCl structure, to contact ion pairs and solvent-separated ion pairs. The data were further used to train and validate a multiconfigurational force-field for HCl-water clusters that incorporates covalent HCl states into the MS-EVB3.2 formalism. Additionally, the many-body interaction of the Cl- ion with water and the excess proton was modeled by the introduction of two geometric three-body terms that incorporates the dominant many-body interaction in an efficient noniterative manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.