Abstract

The current paper presents a synthesis of a novel ion-imprinted hybrid copolymer (IIHC) [poly(1-vinylimidazole)-co-(3-(trimethoxysilyl)propyl methacrylate) and its application to selective adsorption of Pb 2+ ions. The hybrid copolymer was prepared by coupling free radical addition and sol–gel processing, using tetraethoxysilane (TEOS) as cross-linker. Thermogravimetry (TG), FT-IR, X-ray diffraction, specific surface area (BET) and scanning electron microscopy (SEM) were used to characterize the copolymers. The equilibrium data obtained were fitted very well to the non-linear Langmuir–Freundlich isotherm model, as compared to other models, and the maximum adsorption uptake was found to be 7.6 mg g −1. The thermodynamic parameters, including Gibbs free energy (Δ G°), enthalpy (Δ H°), and entropy (Δ S°) of the adsorption process, were found to be −16.23 kJ mol −1, −10.37 kmol −1 and −19.42 J K −1 mol −1, respectively. These results demonstrate that the adsorption of Pb 2+ onto the hybrid copolymer takes place by a spontaneous and exothermic process with further decrease in the degree of freedom without disordering at the solid-solution interface due to the negative Δ S° value. Furthermore, the pseudo-first-order and pseudo-second-order models were used to describe the kinetic data. The experimental data were fitted well to the pseudo-first-order kinetics. Under competitive adsorption conditions, the ion-imprinted hybrid copolymer was 8.8, 64.9 and 16 times more selective when compared to the blank copolymer (NIC – non-imprinted copolymer) for Pb 2+/Cu 2+, Pb 2+/Cd 2+, and Pb 2+/Zn 2+ systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.