Abstract

This work reports the realization and characterization of 4H-SiC p+/n diodes with the p+ anodes made by Al+ ion implantation at 400°C and post-implantation annealing in silane ambient in a cold-wall low-pressure CVD reactor. The Al depth profile was almost box shaped with a height of 6×1019 cm-3 and a depth of 160 nm. Implant anneals were performed in the temperature range from 1600°C to 1700°C. As the annealing temperature was increased, the silane flow rate was also increased. This annealing process yields a smooth surface with a roughness of the implanted area of 1.7 - 5.3 nm with increasing annealing temperature. The resistivity of the implanted layer, measured at room temperature, decreased for increasing annealing temperatures with a minimum value of 1.4 0-cm measured for the sample annealed at 1700°C. Considering only the current-voltage characteristic of a diode that could be modeled as an abrupt p/n junction within the frame of the Shockley theory, the diode process yield and the diode leakage current decreased, respectively, from 93% to 47% and from 2×10-7 Acm-2 to 1×10-8 Acm-2 at 100 V reverse bias, for increasing post implantation annealing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.