Abstract

Iron-based magnetic nanoparticles have gained significant attention in biomedicine. However, the magnetic properties of iron-based nanoparticles prepared through coprecipitation methods often do not meet application requirements. This study aims to enhance the performance of iron-based magnetic nanoparticles by synthesizing them via the coprecipitation method and doping them with Mn2+, Zn2+, and Co2+ ions in various ratios. Among these, Zn-doped nanoparticles with a 0.6 ratio (ZION-6) exhibits the highest saturation magnetization intensity of 98 emu/g sample and the highest r2 values of 165.2 mM−1·s−1, making them an effective T2 MRI contrast agent. Our investigation into the coprecipitation process revealed a formation mechanism for ion-doped magnetic iron-based nanoparticles. This mechanism involves the formation of an intermediate phase, α-FeOOH, followed by phase transformation, ion doping, and the aggregation of small particles to yield the final magnetic nanoparticles. This research could pave the way for developing magnetic nanoparticles with improved properties for biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.