Abstract
Magnetically insulated ion diodes are being developed to drive inertial confinement fusion. Ion beam microdivergence must be reduced to achieve the very high beam intensities required to achieve this goal. Three-dimensional particle-in-cell simulations [Phys. Rev. Lett. 67, 3094 (1991)] indicate that instability-induced fluctuations can produce significant ion divergence during acceleration. These simulations exhibit a fast growing mode early in time, which has been identified as the diocotron instability. The divergence generated by this mode is modest, due to the relatively high-frequency (≳1 GHz). Later, a low-frequency low-phase-velocity instability develops with a frequency that is approximately the reciprocal of the ion transit time. This instability couples effectively to the ions, and can generate unacceptably large ion divergences (≳30 mrad). Linear stability theory reveals that this mode has structure parallel to the applied magnetic field and is related to the modified two-stream instability. Measurements of ion density fluctuations and energy-momentum correlations have confirmed that instabilities develop in ion diodes and contribute to the ion divergence. In addition, spectroscopic measurements indicate that lithium ions have a significant transverse temperature very close to the emission surface. Passive thin-film lithium fluoride (LiF) anodes have larger transverse beam temperatures than laser-irradiated active sources. Calculations of the ion beam source divergence for the LiF film due to surface roughness and the possible loss of adhesion and fragmentation of this film are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.