Abstract

Electrophysiological techniques were used to study ion currents in the ascidian Ciona intestinalis oocyte plasma membranes during different stages of growth and meiosis. Three stages (A, B, C) of immature oocytes were discriminated in the ovary, with the germinal vesicle (GV) showing specific different features of growth and maturation. Stage A (pre-vitellogenic) oocytes exhibited the highest L-type Ca(2+)current activity, and were incompetent for meiosis resumption. Stage B (vitellogenic) oocytes showed Na(+) currents that remained high during the maturation, up to the post-vitellogenic stage C oocytes. The latter had acquired meiotic competence, undergoing spontaneous maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation plays a specific role in embryo development. Spontaneous maturation was inhibited at low pH whereas trypsin was able to trigger germinal vesicle breakdown (GVBD) regardless of pH; in addition spontaneous maturation was not affected by removal of follicle cells or by inhibiting junctional communication between oocyte and follicle cells. Taken together these results imply: (i) Ca(2+) and Na(+) currents are involved in meiotic progression, growth, and acquisition of meiotic competence; (ii) trypsin-like molecules may have a role as candidates for providing the physiological stimulus to resume meiosis. Finally, we provide evidence that follicle cells in Ciona are not involved in triggering GVBD as it occurs in other ascidians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.