Abstract

The ion chemistry of anti-o,o'-dibenzene (1) was examined in the gaseous and the condensed phase. From a series of comparative ion cyclotron resonance (ICR) mass spectrometry experiments which involved the interaction of Cu+ with 1, benzene, or mixtures of both, it was demonstrated that 1 can be brought into the gas phase as an intact molecule under the experimental conditions employed. The molecular ions, formally 1*+ and 1*- , were investigated with a four-sector mass spectrometer in metastable-ion decay, collisional activation, charge reversal, and neutralization-reionization experiments. Surprisingly, the expected retrocyclization to yield two benzene molecules was not dominant for the long-lived molecular ions; however, other fragmentations, such as methyl and hydrogen losses, prevailed. In contrast, matrix ionization of 1 in freon (77 K) by gamma-radiation or in argon (12 K) by X-irradiation leads to quantitative retrocyclization to the cationic dimer of benzene, 2*+. Theoretical modeling of the potential-energy surface for the retrocyclization shows that only a small, if any, activation barrier is to be expected for this process. In another series of experiments, metal complexes of 1 were investigated. 1/Cr+ was formed in the ion source and examined by metastable ion decay and collisional activation experiments, which revealed predominant losses of neutral benzene. Nevertheless, comparison with the bis-ligated [(C6H6)2Cr]+ complex provided evidence for the existence of an intact 1/Cr+ under these experimental conditions. No evidence for the existence of 1/Fe+ was obtained, which suggests that iron mediates the rapid retrocyclization of 1/Fe+ into the bis-ligated benzene complex [(C6H6)2Fe]+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.