Abstract
AbstractThe generation of magneto‐hydro‐dynamic (MHD) to ion‐scale fluctuations in collisionless magnetic reconnection is discussed using a two‐dimensional electromagnetic hybrid code. It is shown that reconnection jets become turbulent specifically in low beta conditions, βi0<0.1–0.2 (where βi0 is the ion plasma beta in initial inflow regions). The fluctuations observed in reconnection jets consist of outgoing Alfvénic fluctuations. As probable candidates for the origin of Alfvénic fluctuations, this study focused on the dynamics in the plasma sheet boundary layer (PSBL) and a current sheet. We suggest that PSBL ion dynamics play an important part in excitation and suppression of waves. PSBL beam ions drive Alfvén waves in MHD to ion scale, kλi<0.5 (λi is ion inertial length), independent of βi0. On the other hand, because the beam temperature is highly correlated with that of inflowing ions, the waves decay by cyclotron damping as the value of the inflow ion beta increases. Local linear analysis suggests that this damping signature changes in βi0∼0.1–0.2 and suppresses the wave activity of Alfvén modes in high beta reconnection jets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.