Abstract

Ion beam deposition (IBD) is the direct formation of thin films using a low-energy (tens of eV) mass-analyzed ion beam. The process allows depositions in which the energy, isotopic species, deposition rate, defect production, and many other beam and sample parameters can be accurately controlled. This paper will review recent research at ORNL on the IBD process and the effects of deposition parameters on the materials properties of deposited thin films, epitaxial layers, and isotopic heterostructures. A variety of techniques including ion scattering/channeling, cross-sectional transmission electron microscopy, scanning electron microscopy, and Auger spectroscopy has been used for analysis. The fabrication of isotopic heterostructures of 74Ge and 30Si will be discussed, as well as the fabrication of metal and semiconductor overlayers on Si and Ge. The use of IBD for low-temperature epitaxy of 30Si on Si and 76Ge on Ge will be presented. The use of self-ion sputter cleaning and in situ reactive ion cleaning as methods for preparing single-crystal substrates for epitaxial deposition will be discussed. Examples of IBD formation of oxides and suicides on Si at low temperatures will also be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.