Abstract
Phagocytosis, which is of fundamental importance for innate and adaptive immunity in animals, is driven by organization of the actin cytoskeleton. To date, however, the molecular events involved in the regulation of phagocytosis through reorganization of actin by small G proteins remains to be elucidated. To address this issue, the molecular mechanism of Rab6 in phagocytosis against virus infection in invertebrates was characterized in this study. The results showed that the Rab6 obtained from shrimp could interact with actin to regulate shrimp hemocyte phagocytosis through induction of the rearrangement of actin to protect against white spot syndrome virus (WSSV) infection. The Rab6 protein in Drosophila melanogaster shared the same mechanism of action as that of Rab6 in shrimp, indicating that the function of Rab6 in phagocytosis was conserved in invertebrates. By comparison with the early marker (Rab5) and late marker (LAMP1) of phagosomes, Rab6 was critically involved in the regulation of actin organization throughout the entire phagocytosis process. The presence of the evolutionarily conserved amino acid sequences of Rab6 in invertebrates and vertebrates indicated a conserved mechanism of Rab6 function in phagocytosis of animals. Therefore, our findings presented novel molecular events in the regulation of phagocytosis by small G proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.