Abstract
The involvement of iron in the biogenesis of the cyanide-insensitive respiration in the yeast Saccharomycopsis lipolytica has been established on the following basis: (1) endogenous metal chelation by either benzyl- or salicylhydroxamic acid, EDTA or nitrilotriacetate prevented the biogenesis of the cyanide-insensitive respiratory pathway in S. lipolytica. (2) Addition of Fe(III) during the biogenesis increased both the rate of the appearance of the alternative respiratory pathway and its extent. Neither Fe(II), nor Co(II), Cu(II), Al(III), La(III), Mn(II) or Mg(II) could substitute for Fe(III). (3) The biogenesis of the alternative respiratory pathway could be dissociated into two steps: (a) a first one, slow, cycloheximide-sensitive, temperature-dependent, iron-independent, leading to cells still fully cyanide-sensitive, presumably involving the de novo biosynthesis of an inactive protein moiety and (b) a second step, fast, iron-dependent, temperature-independent, cycloheximide-insensitive, leading to cells with a cyanide-insensitive respiration, presumably the activation by iron of the inactive precursor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.