Abstract
Products of cytochrome P-450 enzymes may play a role in capacitative Ca2+ entry in endothelial cells, which can promote a rise in vascular permeability. Thapsigargin (150 nM) stimulated capacitative Ca2+ entry and increased the capillary filtration coefficient (Kf,c) in isolated normal canine lung lobes. Pretreatment of the lobes with cytochrome P-450 inhibitors clotrimazole (10 microM) or 17-octadecynoic acid (5 microM) abolished the thapsigargin-induced increases in Kf,c. Because clotrimazole also blocks Ca2+-activated K+ channels, the K+-channel blocker tetraethylammonium (10 mM) was used to ensure that permeability was not influenced by this mechanism. Tetraethylammonium did not affect thapsigargin-induced permeability. The effects of the cytochrome P-450 arachidonic acid metabolite 5,6-epoxyeicosatrienoic acid (EET) were also investigated in lobes taken from control dogs and dogs with pacing-induced heart failure (paced at 245 beats/min for 4 wk). 5,6-EET (10 microM) significantly increased Kf,c in lobes from the control but not from the paced animals. We conclude that cytochrome P-450 metabolites are involved in mediating microvascular permeability in normal canine lungs, but an absence of 5,6-EET after heart failure does not explain the resistance of lungs from these animals to permeability changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.