Abstract

Excessive exposure to infrasound, a kind of low-frequency but high-intensity sound noise generated by heavy transportations and machineries, can cause vibroacoustic disease which is a progressive and systemic disease, and finally results in the dysfunction of central nervous system. Our previous studies have demonstrated that glial cell-mediated inflammation may contribute to infrasound-induced neuronal impairment, but the underlying mechanisms are not fully understood. Here, we show that cannabinoid (CB) receptors may be involved in infrasound-induced neuronal injury. After exposure to infrasound at 16 Hz and 130 dB for 1-14 days, the expression of CB receptors in rat hippocampi was gradually but significantly decreased. Their expression levels reached the minimum after 7- to 14-day exposure during which the maximum number of apoptotic cells was observed in the CA1. 2-Arachidonoylglycerol (2-AG), an endogenous agonist for CB receptors, reduced the number of infrasound-triggered apoptotic cells, which, however, could be further increased by CB receptor antagonist AM251. In animal behavior performance test, 2-AG ameliorated the infrasound-impaired learning and memory abilities of rats, whereas AM251 aggravated the infrasound-impaired learning and memory abilities of rats. Furthermore, the levels of proinflammatory cytokines tumor necrosis factor alpha and interleukin-1β in the CA1 were upregulated after infrasound exposure, which were attenuated by 2-AG but further increased by AM251. Thus, our results provide the first evidence that CB receptors may be involved in infrasound-induced neuronal impairment possibly by affecting the release of proinflammatory cytokines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.