Abstract
Sustained exposure to opioid agonists such as morphine increases levels of calcitonin gene-related peptide (CGRP) in the spinal dorsal horn, a response implicated in the development of opioid tolerance and physical dependence. Recent evidence suggests that both the opioid-induced increase in CGRP and the development of opioid physical dependence are suppressed by blockade of spinal cannabinoid (CB 1)-receptors. The present study examined whether CB 1-receptor activity also has a role in the development of opioid tolerance. In rats implanted with spinal catheters, repeated acute injections of morphine (15 μg) delivered over 4 h resulted in a rapid decline of thermal and mechanical antinociception and a significant loss of analgesic potency, reflecting development of acute opioid tolerance. In another set of experiments, chronic administration of spinal morphine (15 μg) once daily for 5 days produced a similar loss of analgesic effect and a marked increase in CGRP-immunoreactivity in the superficial laminae of the dorsal horn. Consistent with the in vivo findings, primary cultures of adult dorsal root ganglion (DRG) neurons exposed to morphine for 5 days showed a significant increase in the number of CGRP-immunoreactive neurons. Co-administration of acute or chronic morphine with a CB 1-receptor antagonist/inverse agonist, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM-251), inhibited the development of both acute and chronic analgesic tolerance. In animals already exhibiting tolerance to morphine, intervention with AM-251 restored morphine analgesic potency. Co-administration with AM-251 attenuated the morphine-induced increase in CGRP-immunoreactivity in the spinal cord and in DRG cultured neurons. Collectively, the results of this study suggest that activity of endocannabinoids, mediated via CB 1-receptors, contributes to both the development and maintenance of opioid tolerance by influencing the opioid-induced increase in spinal CGRP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.