Abstract

Methamphetamine (METH), an illicit drug, is widely abused in many parts of the world. Mounting evidence shows that METH exposure contributes to neurotoxicity, particularly for the monoaminergic neurons. However, to date, only a few studies have tried to unravel the mechanisms involved in METH-induced non-monoaminergic neural damage. Therefore, in the present study, we tried to explore the mechanisms for METH-induced neural damage in cortical neurons. Our results showed that METH significantly increased intracellular [Ca(2) (+) ]i in Ca(2) (+) -containing solution rather than Ca(2) (+) -free solution. Moreover, METH also upregulated calmodulin (CaM) expression and activated CaM-dependent protein kinase II (CaMKII). Significantly, METH-induced neural damage can be partially retarded by CaM antagonist W7 as well as CaMKII blocker KN93. In addition, L-type Ca(2) (+) channel was also proved to be involved in METH-induced cell damage, as nifedipine, the L-type Ca(2) (+) channel-specific inhibitor, markedly attenuated METH-induced neural damage. Collectively, our results suggest that Ca(2) (+) -CaM-CaMKII is involved in METH-mediated neurotoxicity, and it might suggest a potential target for the development of therapeutic strategies for METH abuse. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.