Abstract

The rice lamina joint is ideal material for investigating the activity of brassinosteroids (BRs) and auxin because of its high sensitivity to these compounds. Using a series of rice BR biosynthetic and receptor mutants, we conducted lamina joint tests to elucidate the mechanism of cross-talk between BR and auxin signaling in lamina joint bending. In BR biosynthetic mutants d2 and brd1, which are defective in C-23 hydroxylase and C-6 oxidase, respectively, the lamina joint response to auxin was significantly higher than that of wild-type plants. The other BR-biosynthetic mutants, brd2, osdwarf4 and d11, which are defective in C-22-hydroxylated BRs, showed less or no response to auxin. These results suggest that C-22-hydroxylated BRs are involved in auxin-induced lamina joint bending. The results were supported by the observation that inhibition of the hyper-response to auxin in d2 was reduced by treatment with brassinazole, which inhibits the function of DWARF4, the C-22 hydroxylase. In d61, which is defective in OsBRI1, a possible BR receptor in rice, the bending angle of the lamina joint in response to auxin and C-22-hydroxylated 6-deoxoBRs was nearly the same as that in wild-type plants. This implies that C-22-hydroxylated BRs function in auxin signaling independently of OsBRI1. From these observations, we propose that C-22-hydroxylated BRs participate in auxin signaling via a novel OsBRI1-independent signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.