Abstract

Higher plant plasma membranes contain ab-type cytochrome that is rapidly reduced by ascorbic acid. The affinity towards ascorbate is 0.37 mM and is very similar to that of the chromaffin granule cytochromeb 561. High levels of cytochromeb reduction are reached when ascorbic acid is added either on the cytoplasmic or cell wall side of purified plasma membrane vesicles. This result points to a transmembrane organisation of the heme protein or alternatively indicates the presence of an effective ascorbate transport system. Plasma membrane vesicles loaded by ascorbic acid are capable of reducing extravesicular ferricyanide. Addition of ascorbate oxidase or washing of the vesicles does not eliminate this reaction, indicating the involvement of the intravesicular electron donor. Absorbance changes of the cytochromeb α-band suggest the electron transfer is mediated by this redox component. Electron transport to ferricyanide also results in the generation of a membrane potential gradient as was demonstrated by using the charge-sensitive optical probe oxonol VI. Addition of ascorbate oxidase and ascorbate to the vesicles loaded with ascorbate results in the oxidation and subsequent re-reduction of the cytochromeb. It is therefore suggested that ascorbate free radical (AFR) could potentially act as an electron acceptor to the cytochrome-mediated electron transport reaction. A working model on the action of the cytochrome as an electron carrier between cytoplasmic and apoplastic ascorbate is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.