Abstract

Recent animal studies have shown that the level of stress-responsive arginine vasopressin (AVP) gene expression in the amygdala is increased during early withdrawal from long-term heroin or cocaine administration. The selective AVP V1b receptor antagonist SSR149415 (capable of exerting antidepressant-like and anxiolytic effects in animal models) also blocked stress-induced reinstatement of drug-seeking behavior. This study was undertaken to investigate the effects of alcohol and to determine whether (i) there are genetically determined differences in basal AVP mRNA levels in the medial/central amygdala (Me/CeA) and medial hypothalamus (MH) between selectively bred Sardinian alcohol-preferring (sP) and alcohol-nonpreferring (sNP) rats; (ii) the AVP mRNA levels are altered by long-term alcohol drinking in sP rats; and (iii) the V1b receptor antagonist SSR149415 alters alcohol drinking in sP rats. In Experiment 1, AVP mRNA levels were measured in the Me/CeA and MH of alcohol-naïve sP and sNP rats, and sP rats exposed to the standard, homecage 2-bottle "alcohol versus water" choice regimen 24 h/d for 17 days. In Experiment 2, SSR149415 (0, 3, 10, or 30 mg/kg; intraperitoneal) was acutely administered 30 minutes before lights off to alcohol-experienced sP rats. Alcohol, water, and food intake were monitored 6 and 24 hours later. We found higher basal AVP mRNA levels in both Me/CeA and MH of alcohol-naïve sP than sNP rats; alcohol consumption decreased AVP mRNA levels in both brain regions of sP rats, suggesting genetically determined differences between the 2 rat lines and in the effects of alcohol drinking in sP rats. Acute treatment with SSR149415 significantly reduced alcohol intake of sP rats. The stress-responsive AVP/V1b receptor system is 1 component of the neural circuitry underlying high alcohol drinking in sP rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.