Abstract

AMP-activated-protein-kinase (AMPK) is a key sensor and regulator of cellular and whole-body energy metabolism and plays a key role in regulation of lipid metabolism. Since lipid metabolism has been implicated in neuronal amyloid-β (Aβ) homeostasis and onset of Alzheimer’s disease, we investigated the involvement of AMPK in neuronal lipid metabolism and Aβ production. We observed in cultured rat cortical neurons that Aβ production was significantly reduced when the neurons were stimulated with AMPK activator, 5-aminoimidazole-4-carboxamide-1- d-ribofuranoside (AICAR), but increased when AMPKα2 was knocked out, thus indicating the role of AMPK in amyloidogenesis. Although the detailed mechanisms by which AMPK regulates Aβ generation is not well understood, AMPK-mediated alterations in cholesterol and sphingomyelin homeostasis and in turn the altered distribution of Aβ precursor-protein (APP) in cholesterol and sphingomyelin rich membrane lipid rafts participate in Aβ generation. Taken together, this is the first report on the role of AMPK in regulation of neuronal amyloidogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.