Abstract

Intermittent hypoxia (IH) describes conditions of repeated, transient reductions in O2 that may trigger unique adaptations. Rest periods during IH may avoid potentially detrimental effects of long-term O2 deprivation. For skeletal muscle, IH can occur in conditions of obstructive sleep apnea, transient altitude exposures (with or without exercise), intermittent claudication, cardiopulmonary resuscitation, neonatal blood flow obstruction, and diving responses of marine animals. Although it is likely that adaptations in these conditions vary, some patterns emerge. Low levels of hypoxia shift metabolic enzyme activity toward greater aerobic poise; extreme hypoxia shifts metabolism toward greater anaerobic potential. Some conditions of IH may also inhibit lactate release during exercise. Many related cellular phenomena could be involved in the response, including activation of specific O2 sensors, reactive oxygen and nitrogen species, preconditioning, hypoxia-induced transcription factors, regulation of ion channels, and influences of paracrine/hormonal stimuli. The net effect of a variety of adaptive programs to IH may be to preserve contractile function and cell integrity in hypoxia or anoxia, a response that does not always translate into improvements in exercise performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.