Abstract

Two-dimensional (2-D) semiconductors exhibit excellent device characteristics, as well as novel optical, electrical, and optoelectronic characteristics. In this talk, I will present our recent advancements in defect passivation, contact engineering, surface charge transfer doping, and heterostructure devices of layered chalcogenides. We have developed a defect repair/passivation technique that allows for observation of near-unity quantum yield in monolayer MoS2. The work presents the first demonstration of an optoelectronically perfect monolayer. Forming Ohmic contacts for both electrons and holes is necessary in order to exploit the performance limits of enabled devices while shedding light on the intrinsic properties of a material system. In this regard, we have developed different strategies, including the use of surface charge transfer doping at the contacts to thin down the Schottky barriers, thereby, enabling efficient injection of electrons or holes. Additionally, I will discuss the use of layered chalcogenides for various heterostructure device applications, exploiting charge transfer at the van der Waals heterointerfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.