Abstract

This paper is concerned with the inverse electromagnetic scattering problem for anisotropic media. We use the interior resonant modes to develop an inverse scattering scheme for imaging the scatterer. The whole procedure consists of three phases. First, we determine the interior Maxwell transmission eigenvalues of the scatterer from a family of far-field data by the mechanism of the linear sampling method. Next, we determine the corresponding transmission eigenfunctions by solving a constrained optimization problem. Finally, based on both global and local geometric properties of the transmission eigenfunctions, we design an imaging functional which can be used to determine the shape of the medium scatterer. We provide rigorous theoretical basis for our method. Numerical experiments verify the effectiveness, better accuracy and super-resolution results of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.