Abstract

We have investigated the growth kinetics of the self-assembled formation of coherently strained CdSe islands. We have found that two distinctly different types of islands are formed in succession. Analyzing the density distribution function of the two dominating size classes of islands, we show that islands of an average diameter of about 16 nm (type B islands) are correlated with a phase transition via a Stranski–Krastanow growth process. The other islands with a diameter of less than 10 nm (type A islands) is formed during the growth of the first 2 ML. At a coverage of about 3.1 ML CdSe stacking faults appear, indicating the beginning of the plastic relaxation of the quantum dot structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.