Abstract

Terahertz science and technology has recently shown new application prospects in artificial intelligence. It is found that terahertz unipolar stimulation can activate cell membrane hydrophilic pores. However, the behaviors of Na+, K+-ATPase and energy consumption during this period remain unknown. This paper investigates these behaviors by Na+, K+-ATPase and electroporation models, based on the interaction theory between terahertz fields and ions at the cellular level. The effective diameters of life ions are considered in the aqueous solution. From results, Na+, K+-ATPases can be activated and stay for a while before close after the stimulation. Their life ion flows are far lower than the flows via the pores. And their power dissipation is as low as 10-11 W in both rat neostriatal neurons and guinea pig ventricular myocytes. The results keep tenable in 0.1-1.2 THz. These lay the basis for investigations of information communication mechanisms in cells under terahertz stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.