Abstract

In this study, the formation and characterization of conversion coatings modified by a sol–gel TiO2 deposit were investigated as a way to develop a new photocatalyst for water and air depollution. The conversion coating, characterised by strong interfacial adhesion, high roughness and high surface area facilitates the sol–gel deposition of titania and enhances its adhesion to the substrate. The conversion treatment is carried out in an acid solution. Observation by Scanning Electron Microscopy (SEM) reveals a rough surface with pores and cavities. According to SIMS measurements, the thickness of the initial conversion layer is evaluated at about 1.5μm. On this pre-functionalised support, the titanium dioxide was deposited by the sol–gel method. The roughness measurements coupled with SIMS analysis allowed a precise evaluation of the surface state of the final layers. The coating consists of two layers: a TiO2 outer layer and an inner layer containing iron chromium oxides. Characterization by X-ray diffraction (XRD) showed the existence of the TiO2 anatase structure as the main compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.