Abstract

Silicon based pressure sensors often take advantage of piezo-resistive gages which are normally embedded by multiple silicon oxide and silicon nitride layers where gold lines form a Wheatstone bridge (Meti et al., 2016; Bae et al., 2004 [2]). Because of manufacturing – stepwise deposition of multiple layers – significant layer residual stresses occur in the GPa range in tension and compression (Zhou et al., 2017 [3]). But also anodic bonding of the silicon MEMS device on usually glassy substrates results in additional initial stresses (Chou et al., 2009 [4] and Sandvan et al. [5]). Especially in avionics MEMS applications such stresses by far exceed the stresses arising under sensor operation and determine the major risks for cracking and delamination. Furthermore, those stresses could lead to a signal drift of the overall sensor over a long period of time — another important trustworthiness risk (Espinosa and Prorok, 2003 [6]).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.