Abstract

The potential energy curves (PECs) of three low-lying electronic states (X1Σg+, w3Δu, and W1Δu) of P2 molecule are investigated using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent basis set in the valence range. The PECs of the electronic states involved are modified by the Davidson correction and extrapolated to the complete basis set (CBS) limit. With these PECs, the spectroscopic parameters of the three electronic states are determined and compared in detail with the experimental data. The comparison shows that excellent agreement exists between the present results and the available experimental data. The complete vibrational states are computed for the w3Δu and W1Δu electronic states when the rotational quantum number J equals zero and the vibrational level G(υ), the inertial rotation constant Bυ, and the centrifugal distortion constant Dυ of the first 30 vibrational states are reported, which accord well with the experimental data. The present results show that the two-point extrapolation scheme can obviously improve the quality of spectroscopic parameters and molecular constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.