Abstract

The transport characteristics of cut tobacco as a typical biological wet slender particle were investigated in a pilot-scale rotary cylinder. Effect of solids and gas flow rate, moisture content of particles and rotating speed of cylinder was analyzed. The adaptability of the classical Friedman model for predicting average residence time of these type particles was also investigated. The result shows that the gas flow rate, moisture content of particles as well as rotating speed of cylinder have a significant influence on the axis transport velocity and forward step per cycle of cut tobacco in rotary cylinder. It’s difficult for Friedman model to accurately describe influence of gas flow rate and moisture content on transport of cut tobacco, which was associated with the particle characterize and influence of moisture content on the fluidity of particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.