Abstract

Nature has been a source of inspiration for developing advanced autonomous aerial and underwater vehicles. The bodies with flapping appendages produce Center of Mass (COM) oscillations as the flapping fins generate forces oscillatory in nature. The vehicles with larger COM oscillations pose the problems of control and maneuverability and this paper discusses the effect of flexibility and other operating parameters such as heaving, pitching amplitudes and operating frequency on COM oscillations. A detailed theoretical investigation has been carried out to predict the optimal operating parameters along with the fin stiffness to reduce the COM oscillations for a given Self-Propelled Speed (SPS). Experiments have been performed to validate the theoretical results. It has been observed that the flexible fins operating at larger frequencies produce lower COM oscillations compared to stiffer fins operating at lower frequencies for a given mean thrust/SPS, and that the trailing edge amplitude along with the deformation pattern play a role in the generation of COM oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.