Abstract

According to an experimental dataset on the tensile strength and elongation of TA15 titanium alloy under different hot deformation process parameters including temperature, strain, strain rate and cooling condition, support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization, is proposed to establish a model for prediction of the tensile strength and elongation of hot deformed TA15 titanium alloy. For tensile strength, the mean absolute percentage error (MAPE) achieved by SVR is 0.65% and 0.68% for the training and test set, respectively. At the same time, the MAPE for elongation achieved by SVR is 1.51% and 3.36% for the training and test set, respectively. The MAPEs for both tensile strength and elongation achieved by SVR are much smaller than those of BPNN by using identical training and test samples. Accordingly, the established SVR model was adopted to illustrate the relationships among tensile strength, elongation, and the process parameters. From the 3D surface of tensile strength vs. temperature and strain rate, it is found that to reach a higher tensile strength, a strain rate lower than 0.01s-1 is required, and a lower strain will be helpful for achieving the maximum elongation. These suggest that SVR as a novel approach has a theoretical significance and potential practical value in fabrication of TA15 titanium alloy with desired properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.