Abstract

This work investigates the fracture behavior of shape memory alloy NiTi (50.7 at. pct Ni) at room temperature. Macroscopic mechanical tests, microscopic in situ observations of tensile fracture processes by scanning electron microscopy (SEM), and detailed analyses of fracture surfaces were carried out. The results reveal that specimens with different thicknesses show various shape memory effects and superelasticities. The main crack with a quasi-cleavage mode that combines cleavage with ductile tearing is initiated at the notch tip and is stress-control-propagated in line with the direction of the maximum normal stress. The microstructure has little effect on the direction of crack propagation, but coarser substructures show lower resistance to the crack propagation. In specimens with various types of notches, various notch acuities present different effects on the crack initiation and propagation and result in different fracture behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.