Abstract

Two conductive polymers were evaluated to be the active materials in a sensor device for the detection of beta radiation. This was accomplished by characterizing the changes in conductivity of electrically conducting polymer films caused by exposure to tritium gas for varying lengths of time. The behavior of these materials when exposed to gamma radiation was also studied to gain further insight into the mechanism of conductivity degradation by ionizing radiation. Two types of conductive polymer, polyaniline (PANi) and poly(3,4-ethylenedioxythiophene) (PEDOT), were chosen as candidate materials for their widespread commercial use. The change of surface resistance (conductivity) of PANi and PEDOT films when exposed to gamma radiation in both air and deuterium environments was evaluated as well as tritium exposures in 10 4 and 10 5 Pa gas. Raman and absorbance spectra of gamma irradiated samples were obtained to determine the mechanism of conductivity degradation in both polymers. Post-irradiation gas analysis of the samples contained in deuterium revealed very little (or no) hydrogen in the containment vessel, indicating that hydrogen–deuterium isotopic exchange was not responsible for the decrease in surface conductivity due to gamma exposure. The effects of irradiation-induced oxidation were also studied for both conductive polymers during gamma irradiation. It was concluded that chain scission via free radical formation and chain cross-linking are most likely the two dominant mechanisms for conductivity change and not de-protonation of the polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.