Abstract
The mechanical properties and breaking behaviors of the [100]-oriented single-crystal gold nanowires containing a set of defect ratios have been studied at different temperatures using molecular dynamics simulations. The size of the nanowire is 10a × 10a × 30a (a stands for lattice constant, 0.408 nm for gold). The mechanical strengths of the nanowires decrease with the increasing temperature. However, the defects that enhance the local thermal energy have improved the nanowire mechanical strength under a wide range of temperature. Comparing to the single-crystal nanowire, the existence of the atomic defects extends the elastic deformation showing a larger yield strain. By summarizing 300 samples at each temperature, the statistical breaking position distribution shows that the nanowire breaking behavior is sensitive to the atomic defects when the defect ratio is 5 % at 100 K, whereas the ratio is 1 % when temperatures are 300 and 500 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.