Abstract
Chatter has always been a key problem restricting the improvement of robotic milling quality and efficiency. To avoid chatter, it is necessary to determine what is the dominant chatter mechanism (mode coupling or regenerative) of the robot milling system. Therefore, this paper focus on the dominant chatter mechanism in high-load (600kg) robot milling. The modal test results show that the dynamic flexibility of spindle-tool structure mode in high-load robot is significantly higher than that of the body structure mode, which is significantly different from the low-load robot in other studies. The mode coupling chatter stability prediction models are established based on eigenvalue method and zeroth order approximation, and the predicted stability boundaries are compared with the experimental results. The results show that only high-frequency chatter exists in the high speed region (1000-8000rpm), and no low frequency chatter occurs. The low-frequency chatter around the robot body mode is found in the low-speed region (400-1000rpm), but the mode coupling chatter theory could not explain the chatter varies periodically with the spindle speed. However, the stability boundary predicted by the regenerative chatter theory also changes periodically with the spindle speed. This indicates that the milling chatter dominant mechanism of high load robot is regenerative chatter. This study analyzes the milling chatter dominant mechanism of high-load robot through theoretical and experimental verification, which can provide theoretical support for high-load robot milling chatter control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.