Abstract
Short fibers have been widely used to prepare the fiber reinforced asphalt concrete (FRAC). However, internal interactions between fiber and other phases of asphalt concrete are unclear although experimental methods have been used to design the FRAC successfully. In this paper, numerical method was used to investigate the reinforced mechanism of FRAC from microperspective. 2D micromechanical model of FRAC was established based on Monte Carlo theory. Effects of fiber length and content on stress state of asphalt mortar, effective modulus, and viscoelastic deformation of asphalt concrete were investigated. Indirect tensile stiffness modulus (ITSM) test and uniaxial creep test were carried out to verify the numerical results. Results show that maximum stress of asphalt mortar is lower compared to the control concrete when the fiber length is longer than 12 mm. Fiber reduces the stress level of asphalt mortar significantly. Fiber length has no significant influence on the effective modulus of asphalt concrete. Fiber length and content both have notable impacts on the viscoelastic performance of FRAC. Fiber length should be given more attention in the future design of FRAC except the content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.