Abstract
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) microporous membranes were prepared via thermally induced phase separation (TIPS) process. Then they were immersed in a liquid electrolyte to form polymer electrolytes. The effects of polymer content in casting solution on the morphology, crystallinity, and porosity of the membranes were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and a mercury porosimeter, respectively. Ionic conductivity, lithium-ion transference number, and electrochemical stability window of corresponding polymer electrolytes were characterized by AC impedance spectroscopy, DC polarization/AC impedance combination method, and linear sweep voltammetry, respectively. The results showed that spherulites and “net-shaped” structure coexisted for the membranes. Polymer content had no effect on crystal structure of the membranes. The maximum transference number was 0.55. The temperature dependence of ionic conductivity followed the Vogel–Tammann–Fulcher (VTF) relation. The maximum ionic conductivity was 2.93 × 10−3 Scm−1 at 20 °C. Electrochemical stability window was stable up to 4.7 V (vs. Li+/Li).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.