Abstract

In order to study the influence of cryogenic temperature on the mechanical properties, a series of uniaxial tensile experiments were performed at different temperatures (20 °C, 0 °C, −20 °C, −40 °C, −80 °C, −120 °C, −196 °C) for the austenitic stainless steel S30403 (both the base material and weld joint). Rp0.2 (0.2% proof strength), Rp1.0 (1% proof strength), Rm (tensile strength), A (elongation after fracture), Z (reduction of area), σcr (a critical threshold stress for onset of discontinuous yielding), and Rh (second hardening ratio, Rm/σcr) were taken into consideration. It was found that in GB150, ASME VIII-1, and EN13445, the maximum allowable stress for austenitic stainless steel at low temperature (≤20 °C) was dependent on the yielding strength at room temperature (20 °C). Compared with Rp0.2, Rp1.0 had a linear relationship with temperature. Synthetically considering the first hardening and the second hardening, both the base material and weld joint presented a better strength performance at low temperatures. The plasticity of base material dropped as the temperature decreased, and it was kept at an acceptable level. Nonetheless, the plasticity of weld joint was nonlinear because of the nonuniform structure components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.