Abstract

Interest in magnetic refrigeration, which is based on the magnetocaloric effect (MCE), has greatly increased during the past two decades. As a less-polluting and more effective cooling technology than gas compression, magnetic refrigeration is one of the prominent and possible options. Perovskite Oxides played a major contribution for the development of magnetic refrigeration (MR). Sr0.25Ca0.75Mn1-xTixO3 (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) polycrystalline samples were synthesized by conventional solid-state reaction. Its cubic perovskite-type crystal structure is discovered to be of the Pm-3m space group. At T = 31.3 K, the alloy experiences antiferromagnetic transition for the composition of Sr0.25Ca0.75Mn0.9Ti0.1O3. It demonstrates that the greatest magnetocaloric reports are 8 J/kg K for a magnetic field of 7 Tesla and 3.2 J/kg K for 1 Tesla. These (ΔSM) value is comparable to the magnetization values of the ferromagnetic Heusler alloys and are very high in these kinds of antiferromagnetic perovskite systems. For the Sr0.25Ca0.75Mn0.9Ti0.1O3 material, this is the first report of substantial magnetic entropy changes brought on by a weak magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.