Abstract

The aim of this work is to elucidate the structure of the new hydrogel prepared with scleroglucan (Sclg) and borax, suitable for drug delivery, applying theoretical approaches, and to explain its very peculiar swelling. The possible linkages with borate ions have been investigated and original parameters for the 4,6-gluco-borate moiety have been introduced. The structures relative to the Sclg chains in the presence of borax and the possible mutual arrangements among the triple helices are given. According to molecular dynamics simulations, the most probable assembly of the chains in the network is proposed, without and in the presence of three tested model drugs with different molecular dimensions: theophylline (TPH), Vitamin B12 (Vit. B12) and myoglobin (MGB). The hydrogel supramolecular structure, formed via chemical and physical linkages among the polysaccharidic chains, is built up taking into account the steric hindrance of the entrapped molecules. It is shown that molecular dynamics analysis can be a useful tool capable to shed some light on the anomalous swelling of the hydrogel, suitable for drug release, giving a new insight on the network structure and the release rate of the guest molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.