Abstract

Friction Stir Welding (FSW) is a relatively new solid state joining method that can be used to achieve very good weld quality. This technique is energy efficient, environment friendly, and versatile. The FSW process utilizes a rotating tool in which includes a pin and shoulder to perform the welding process. FSW applications in high strength alloys, such as stainless steel remain limited due to large welding force and consequent tool wear. It has been shown that applying the ultrasonic vibration on some processes such as turning and drilling the resultant forces are decreased and process condition is improved. In this paper the influence of applying vibration on FSW is investigated in simulating tools. For FSW modeling a proper transfer function of axial force has been proposed. The resultant axial force of conventional FSW and Vibration Assisted FSW (VAFSW) are compared in frequency and time domain state spaces. A good correlation between FSW simulation and experiments is observed. For further investigation of VAFSW the response surface of design of experiment (DOE) method is utilized. The influence of changing VAFSW process parameters is investigated. The simulation results indicate that vibration helps to decrease the welding force. Using DOE method the effects of implemented frequency and vibration speed amplitude in FSW are found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.